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I INTRODUCTION 

Interim Report No. 4 deals with studies on "Parameter Optimization" 

carried out during the period July 1, 1964 to September 30, 1964 under the 

contract NAS8-5411 . The report contains preliminary results which should 

not be considered final. 

i n  the preceding reports the effects of measurement errors on the orbital 

parameters in navigation and o h i t  determimtion are discussed. Relationships 

were derived which show the errors of  the orbital parameters in terms of  the 

errors of the observed quantities as a function of the position of the vehicle 

along the trajectory. By normalization, instructive relationships can be 

obtained which show clearly the positions along the trajectory when measure- 

ments of the radial and angular position cause excessive errors of  the orbital 

parameters. 

The present report deals with a study based on a second approach of 

optimization mentioned in one of the earlier progress reports. The report 

presentsthe results of  a study of the application of minimum variance techniques 

for obtaining optimized orbital pammeters. The appmach i s  based on iterative 

evaluation of the measurements for the orbit determination. The values of the 

obtained orbital parameters come closer to those of the true orbit with each 

additional measurement. At  this iterative approach the estimated o h i t  consists 

of a sequence of oh i ta l  trajectory segments which with each additional measure- 

ment are closer to the true orbit. Each of the trajectory segments represents a 

section of an optimum orbit described by optimized parameters. The optimization 

i s  valid for the specific set of  the preceding measurements. Orbit perturbations 

can be introduced for each orbital segment and taken into account. (This study 

was carried out by Dr. C. H. Chambers). 
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One of the phases of the mathematical apprwch described in more detail 

in  Part 3 (Dr. 0. R. Ainsworth) i s  based on a generalized Newton-Raphson 

operator which yields i n  an iterative process the subsequent orbital parameters 

by operating on their preceding values. At these computations, it i s  practical to 

use position and velocity (previously the observed quantities) as orbital parameters. 

The use of the Newton-Raphson operator represents an effective method for 

solving nonlinear differential equations from sets of known values of the functions. 

The formulations of the orbit determination described i n  Part 2 were converted 

into a computer program for the UNIVAC 1107. An example of the solution of a 

representative problem i s  shown as a conclusion of Part 2. 



* II. OPTIMUM ORBIT DETERMINATION BY MINIMUM VARIANCE 
TECHNIQUES 

A. I NTRODUCTI ON 

The basic purpose of t h i s  paper i s  as foIlows. We are given a dynamic 

system and a procedure for making measurements on this system. We assume 

that i f  the measurements were exact, then we could predict the motion of the 

dynamic system exactly. However, these measurements are contaminated by 

mise, e.g. calibration errors, readout errors, etc. We wish to determine the 

time at which to make a measurement such that this measurement i s  optimal. 

A measurement i s  optimal i f  the information obtained from the measurement 

allows us to predict the motion of the dynamic system more accurately than 

any other information obtained at that or any other time. That is, the optimal 

measurements results in the greatest decrease in our uncertainty about the 

motion of  the dynamic system. This appmch entails two distinct optimization 

processes. First, we must determine the greatest decrease in  uncertainty or 

determine the optimal information to be had at any time i f  a measurement were 

to be made at that time. Second, we must examine the presumed improvements 

obtained by the preceding optimizations as a function of  time to determine the 

best time to make this measurement. This process i s  then repeated until the 

motion i s  known as accurately as desired. 

In general the dynamic system can be described by a set o f  variables or 

coordinates x. or equivalently a vector 
I 

which obeys some differential system 

dX - = F  dt - 
- 

The path o f  the solution X - (t) i n  n dimensional space i s  called the trajectory. 

-3- 



-4- 

If any particular measurement yielded exact values of these coordinates at 

some time then, the future motion could be determined exactly by solving the 

differential system. In reality a measurement wi l l  yield only certain coordinates 

with various degrees of uncertainty. Either through init ial conditions or 

previous measurements some nominal or best estimate trajectory i s  known together 

with a set of coordinate uncertainties at  each point, such as the elements of an 

error ellipsoid, which defines the bounds in  which the system actually lies at 

that time. 

best estimate 

If a measurement were made then the ermr bounds or ermr ellipsoid 

would be reduced i n  size. An optimal measurement would generally result i n  

the greatest reduction in volume of this error ellipsoid. At each point of the 

nominal trajectory we w i l l  define the optimal reduction i n  the ellipsoid i f  a 

measurement were to be made, and then examine this set of ellipsoids along 

the trajectory as a function of time to determine which ellipsoid i s  best or 

equivalently at what time the measurement should be made. 
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8. DYNAMIC MODEL AND NEWTON-RAPHSON PERTURBATION SCHEME 

a . Solution of Perturbed Dynamic Systems 

We assume that the diffarential system can be decomposed into the 

where >> I ,P I , i .e., - P i s  a perturbation; and the unperturbed system 

i s  exactly soluble. The exact solution can be characterized by some set of  

system elements X = ( X ,, . . . , in) . One possible set of elements i s  the 

system vector at a particular time, X (t ) . 
T 

- 0  

Initially, the unperturbed solution, X wi l l  be a close approximation to 

the true solution. However, since P (t) # 0 the system w i l l  eventually deviate 

significantly from the unperturbed solution and X 

approximation. This difficulty can be corrected by the process of  discrete 

variation of elements, i.e., rectification. When the system deviates from the 

unperturbed solution by predetermined limits, the system elements are re-djusted 

so that the deviation fim a new unperturbed solution, X 

- 0, 

- 
wil l  no longer be a good 

- 0  

i s  zero. 
-0 

One standard method of integrating the above differential system i s  to let 

X = X + 
perturbation equation, 

, and then to numerically intqrate the resulting nonlinear 
-0 - - 

The usual difficulties encountered in  numerically integrating nonlinear differential 
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equations are reduced because both e and i t s  derivative are small. I f  6 becomes 

too large, the rectification process described above i s  used. This i s  the well 

known Encke method. However, this method makes use of the exact solution 

only to the extent of  formulating the perturbation differential equations. 

- - 

We propose a completely different approach to t h i s  problem which makes 

much more analytic use of  the exact solution. We shall construct a sequence of  

solutions, X which converge to the desired solution in the Cauchy sense, i .e., 
n m  

UX, - X, 11 < 

m 
- 

0 
n, m > N. We take the first element in the sequence X to be 

. Successive elements are obtained by operating on preceding elements with 
- 

X 

the generalized Newton-Raphson operator, i .e., X 

Newton-Raphson operator i s  defined by the solution of an associated linear 

differential system. 

- 0  

= (NR) cm . The 
n +  1 - 

This operator can be shown to be a contractive mapping of the metric space of 

the variables into itself, thus only one point (solution) i s  invariant and the 

iterative scheme wi l l  converge. Also, the fact that the iterates are obtained 

fmm a linear differential system, allows a constant, relatively large step length 

to be used in their numerical integration. This i n  contrast to the numerical 

necessity of variable step length when forwardly integrating a nonlinear system. 

This result at first may seem paradoxical since for large n the solution of  

the associated linear system i s  effectively the same as the exact solution of  the 

nonlinear system, and the numerical difficulties in  obtaining these solutions 

should be the same. However, i t  must be recalled that any forward integration 

scheme involves a sampling of  the family of solutions about the desired solution, 

- 



4 

. -7- 

and the degree to which the neighboring families approximate the desired 

solution determines the accuracy o f  the scheme with a given step length. Thus 

even though the solutions of the linear and nonlinear systems are the same, the 

associated families wi l l  be quite different and the bmi ly for  the linear system 

wi l l  be much more well behaved. 

The effectiveness of any iterative scheme depends on the first element of 

the sequence. Experience has shown that for the problem under consideration, 

three iteration are sufficient, using the exact solution X as the first element. 
- 0  

b . Illustrative Example 

As an example which wi l l  demonstrate the Newton-Raphson 

technique, consider the nonlinear equation 

2 
dy = c y  ar I C t < <  1 

Clearly, the solution of the unperturbed part ( C =  0 ) i s  

= l  
YO 

The jacobian i s  

and the first iterate i s  determined from the linear equation 

dY 1 = 2 E ( y 1 - 1 )  + e  

dt 
= 2 c y -  c 

This equation has the solution 

2€ t) ( l + e  
1 1 

Y = 2  
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Comparing this to the exact solution 

1 y =  - 
1 -  e t  

We see that they agree to the third order in e from just one itemtion. 

C. Satellite Orbits and On-bard Modification o f  Perturbation Scheme 

Let us now examine the actual dynamic system under consideration, 

i .e., satellite orbits. For satellites o f  the earth, the exactly solvable part i s  

just the classical 2-body problem. The perturbation tern may contain as many 

effects as the investigation desires. However, for close-in orbits (within 3 earth 

radii), the major perturbation i s  the oblatness of  the earth. Since the derivations 

a d  computations presented here are of a pilot nature, we w i l l  l imi t  ourselves to 

include different perturbations. 

We take our dynamic coordinate to be a quasi-inertial rectangular, Cartesian 

coordinate system, centered at the center o f  the earth. The z axis i s  aligned in 

the right hand sense with the earth's axis of mtation; the a axis points toward the 

vernal equinox i n  Aries; the y-direction completes the right-hand triad. The 

system i s  quasi-inertial because i t s  acceleration, i .e., the acceleration of  the 

earth toward the sun, i s  a neglected perturbation. 

The Hamiltonian i s  

2 3 2  K i s  the gravational constant, R = 1 Xi , R i s  the radius o f  the earth, 
i= 1 

and J i s  the shape factor. We have truncated the Legendre expansion after the 

oblatness term. We have also set the P coefficient equal to zero, since the 

center of the earth effectively coincides with the center of the coordinate system. 
1 
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The Hamiltonian equations of  motion are 

x. = 
I a Pi 

Making the standard replacement of  p. by m X. 

system 

, we have the differential 
I 1+3 

x. = xi+3 
I 

i = l , 2 , 3  

R 2  KX. 
I - - -- [ 1 + J  (7) p2i I  'ii.3 '3 

where 2 x, 
3 5,  =-p22 = 1 - 5 T = P  - 2  - 23 

r 

are the partial derivatives of  the Legendre polynomial term. 

In oder to apply the Newton-Raphson scheme, we need to determine the 

jacobian. From the above form of  the forcing matrix, we have 

0 I 

where the sub matrices are 3 x 3 and the components of H are obtained by 

straight b w a d  differentiation of the forcing matrix. We have 

2 
K ( 3 ~ ~ ~ . - 6 ~ . r  ) 

h.. = R 2  5 ' I  r [ 1 +J(r)  P 2 i I  
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2 K J R2 X* x3 2 +-+ (Xi  P2i - 7 ( X3 X. = s . r ) ) 
r r I 31 

In order to begin the Newton-Raphson iterations, i t  i s  necessary to obtain 

the exact two-body solution. The most pmctical method of calculating t h i s  

solution from the point of view of the rectification process and ell iptic orbits 

i s  to use the position and velocity vectors at an init ial  time as basis vectors, 

and expand the position and velocity vectors at a later time in  t h i s  basis. This 

i s  clearly possible since the two-body orbit lies i n  a fixed plane, and any non- 

colinear position and velocity vectors are sufficient to define this plane. We 

have the well  documented results. 

+ 4 + 
0 

r = P r  + Q ro 

. 
+ - 4  ' +  

0 
r = P r  + Q r o  

where 
+ *  

d = r * r  
2 ;L -l a =  ( r  - - )  

K 0 0 0 

a 
r. 

I 
P = - - ( 1 - c o s  e )  + 1 

Q=Kr 0 s i n e +  ( 1  - c o s  e )  

r =  a ( l - c o s  e )  + ro cos8 +F d sin @ 
0 

p = -  GE sin e 
r r  

0 

a 
r Q = - ( I - C O S  e )  + I  
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e , the increment i n  eccentric anomaly i s  determined from the generalized 

Kepler's equation 

0 
r d 
0 

p ( t - t o )  = e - s i n 8  + - a sin @ +@( 1 -cos e )  

This trancendental equation i s  solved by Newton's method of iteration. 

In  the Encke method rectification i s  done whenever a component of the 

perturbation vector E exceeds a predetermined limit. However, i n  the 

Newton-Raphson scheme, the criterion for accuracy i s  how ''close" the last 

two iterotes l ie to each other. The measure of "closeness" i s  conveniently 

defined as the metric of  a metric space. A computationally attmctive, yet 

analytically meaningful, metric useful for our purposes i s  given by 

When this scalar quantity, taken between the last two iterates, exceeds 

a specified limit, the perturbation scheme i s  considered to be diverging, and 

rectification i s  applied. Clearly, the accuracy could be improved by calculating 

more iterates. However, in order to perform these additional calculations, a 

greatly expanded computer memory capacity i s  required. Also, much more time 

i s  used than in  the rectification process. By fixing the maximum number of 

iterates ahead of time, a great savings in  computer memory storage can be had. 

This savings makes the scheme attractive for use i n  limited size, on board 

computers. Let us now examine how this savings i s  effected. 

When one numerically calculates the Newton-Raphson solution, two 

distinct iteration processes are involved. First, the solution iterates are obtained 

one from the other; and second, the independent variable, time, i s  iterated over 

a fixed step length i n  numerically integrating the associated linear system. 
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If time i s  iterated first, the entire solution iterate must be remembered 

in  order to obtain the next solution iterate. This requires a great deal of computer 

storage. However, i f  the solutions are iterated first, and then the time, almost 

no memory i s  required since the integration scheme, e.g. Runge-Rutta, requires 

only a limited number of neighboring values of the solution iterates at each 

integration point. The only restriction of the metbod i s  that the maximum 

number of solution iterates are fixed initially. 
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d . Derivation of the Optimization Parameter 

Let us now examine the mathematical specifics of the general optimization 

scheme discussed i n  the introduction. 

Whenever a measurement i s  made, we obtain an associated set measurement 

errors. We assume that these errors are known experimentally for the type o f  

measuring apparatus used. It is also possible for these measurements errors to 

depend on the values of  the measurements themselves. These errors represent 

the accuracy to which we are able to determine the state of our system. These 

errors can be represented by a matrix 

the standard deviations squared, and the o f f  diagonal elements are the correlations. 

, i n  which the diagonal elements are 

Concurrently, the minimum variance calculations yields the matrix Y+ . 
The elements of Y are the elements of the predicted error ellipsoid i n  measure- 

ment space. This ellipsoid measures the improvement i n  uncertainty about the 

dynamic system, i f  the measurement were to be made. 

+ 

We can determine how optimal the results of our measurement are by just 

comparing Y+ and 

ellipsoid i n  both size, shape, and orientation determines how optimal the measure- 

ment is. Let us now examine these two criteria. 

. The degree to which Y+ ellipsoid duplicates the 

First, assume that Y+ and represent ellipsoids of the same shape, and 

similarly oriented. Consider the ratio of the volume of Y+ to that of 

two ratios for two measurements are larger than unity, then the one closer to 

unity i s  more optimal. If the ratio i s  less than one, we have an experimentally 

unverifiable situation. However, just from considerations of  the system errors, 

the ratio closer to zero i s  more optimal. 

. If 

Second, assume that the two ellipsoids have the same volume. Then, of two 

measurements, the one more nearly proportional (the same shape and orientation) 

to QT i s  more optimal. 
+ 

Now, the square roots of the diagonal elements of Y and are the 

standard deviations and also the half dimensions of the axis oriented parallelipiped 
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just containing the respective ellipsoids. If we use these bounding parallelipipeds 

for comparison, we effectively ignore the amount the ellipsoid i s  rotated from the 

coordinate axes. These angles are just a measure of  the correlations between 

various components i n  measurement space, and ignoring them does not affect our 

knowledge about the absolute errors, 

Let us define 

0. I = Jlr61 (not -su m med) 

. n  
E a  I 

U = -  
0 n o i  i= 1 

n 

i= 1 
0 = - I  1 (I. n = dimensions of observation space. 
- 

n I 

Then an absolute measure of the shape of the parallelipiped i s  given by the quantities 

- 
oi / a  - 0  

0 
' 0  i 

- 
'i - ' i /O 

and a measure of the volume i s  clearly 

V = (b)"  
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- 0 
0 0 
c c 

0. 
0. 

n 
3. 

9 ul 
0. 0. 
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A measure of the deviations in shape i s  given by 

2 n 

i= 1 
a = 1 ( Yi -Yo+ 

and in volume, by 

0 U 
0 

a 
To accent the shape deviations we write e 

obtain absolute magnitudes we take the square root, i.e. 

and since we used the squares to 

a 1 
2 

e 

Since we want both shape and size efkcts, we merely multiply them to obtain 

the optimization parameter #J as, 

For a typical satellite orbit the variation of + with time i s  shown i n  

Figure 1 . 
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c. DIFFERENTIAL CORRECTION AND PARAMETER OPTlMI ZATl ON PROGRAM 
USING MINIMUM VARIANCE TECHNIQUE 

a. Probability Theory and Classical Minimum Variance Estimates 

Let us consider a set of n random real variables y (t ), , y (tn). 
1 

The probability that a l l  the variables are less than a specified set of values i s  

called the joint probability distribution function 

The joint probability density function i s  given by 

... an F (y (t,) 8 * * * I  y (tn) ; '1, 
I m) - - 

a t, ... a t 
n 

The expectation of a function g (y (t,), * * *  y (t,) ) i s  defined to be 

The conditional expectation i s  given by 
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whee the y (t,), . . . , y (tn-l) are specified. We have by the above definitions 

Let us now examine the specific details of the prediction problem. Let us have 

a distinct set of  time ordered observational data given: 

t. > t. i f f  i > j 
' I  

The y.(t.) are real-valued random variables. 
I I  
Using a l l  of this infonnation we can predict through a system of regression 

A 
relations some optimal estimate X (t) of  the tmjectoty. This trajectory wi l l  deviate 

from the true X (t) by some amount 
- 

- 
A 

= x (t) - x - (t). - 

E i s  a measure of our incorrect pediction. To obtain the optimal prediction, 

we should minimize the expectation value of some positive definite, monotonically 

increasing function of - with respect to the prediction. This function i s  

- 
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appropriately called the loss or penalty function. The usual choice for this 

function is E ETwhere €,is the transpose of E . This choice can be justified 

or unjustified depending on the source. We will use it bemuse of its mathematical 

attractiveness, and leave it at that. Notice that € is a column vector and that 

E €T thus has no meaning as a matrix product. This is defined to be the direct 

- - -  - 

- 
- -  

or dyadic product of the two vectors. We have fmm above 

and to obtain the minimum of E [ L ET] we need only minimize the conditional 

expectation e 
- -  

Proceeding formally we have 

1 r ( t ) l  + 2 ?  = 0 n - = - 2 E  X, Ir (t,), * * *  
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where we have use the formal relations 

2 2  
ai2 - 

and the fbct that 

This yields the optimal estimate 

Notice that this approach tacitly assumes that a l l  the observations are known. 

Since E [ i s  the variance, this method i s  frequently called the minimum 

variance technique. These results can be expressed in a much more elegant 

formalism. This formalism wi l l  also enable us to attack the differential correction 

problem in a straightforward, concise manner. 

- -  

b. Minimum Variance Estimates in  Observation Space, and Wiener 
Differential Correction Problem 

Any random variable which can be written i n  the form 

can be considered a vector i n  the vector space with basis the independent random 

variables y.(t.). Clearly, the Aii are the components of  the given variable. Denote 

the vector space generated i n  this manner by y (t ), 0 ,  r (t,) as Y (t ), the 

observation space. (Recall that we have required our observations to be time 

' I  
- 1  n 
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ordered. Thus specifying the end time t i s  sufficient to specify the entire 

sequence). The scalar product between two vectors i s  just their covariance, 
n 

The usual definitions of orthogonality, length, T 
i.e., 5 . y  = E ( Z I ) *  
orthonormal basis, etc., follow directly. 

Any random variable, - x (t), can be decomposed (uniquely) into a part 

t ) lying in Y (tn),and a part x l(t I tn) perpendicular or orthogonal ~ l l ( t  1 n 

to Y (t ). Now if the random processes are gaussian, then the orthogonal n 
projection x -1 1 
to Y (t ) i.e., n 

(t I tn) i s  just the conditional expectation of  x (t) with respect 

But this conditional expectation i s  just what we obtained above for the optimal 

estimate, X (t), of X (t). Thus we are led to propose: 
A 

- - 
h 
X ( t 1 t n )  - =cll(t1t n ) = E  [ X ( t ) l  - Y ( t ) ]  n 

and we wish to prove that i t  i s  unique. Proof: 

X (t) i n Y  (t ). We have 

Let 5 (t) be any estimate of - 
n - 

Va ria n ce = E  

= x (t) - 
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Since (X - X ) i s  orthogonal to (X - -11 -11 - - 6 ) we have 

E [ ( x - x  ) ( X - x  ) - -11 - -11  

> E  [ (X - X  ) (X  - X  ) 1 , the minimum variance, unless 6 = zl1 Q.E.D. - - -11 - -11 
This i s  clearly equivalent to saying that the projection that minimizes the distance 

(here variance) from a vector to a subspace i s  just the orthogonal projection. The 

optimal estimate of the state vector X (t ) b r  measurements made through that 

time i s  clearly 

- 

- k  

h 
We wi l l  use this relation to generate a recurrence relation for X . Now, the 

measurements through t ), and the measurement 

- y (tk) adds to this the subspace Z (t,), ;.e. 

- 
generate the vector space Y (t k-1 k- 1 

Every vector in  Z (t ) i s  orthogonal to every vector in Y (t 

decomposed as follows 

). 41. (t,) can be k k- 1 

E z(tk) , 41. 
by the solution of  the original differential system, i.e. 

(tk 1 tkm1) e Y (tk 1) and x (tk) can be obtained from x (tk 1) - - -  - 
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A 
The first term i s  just the dynamic prediction of X (t ) from the best infomation - k  

i .e., Y (t had at time t 

information gained from the measurement y (t ). If no new information i s  gained 

from y (tk), then r (tk) Y (tk 1), the subspace z (t ) i s  zero, the second term 

i s  zero, and the optimal estimate i s  just the dynamic prediction of the previous 

optimal estimate. Clearly t h i s  i s  a perfectly consistent result. The additional 

information must be due only to that part of  y (t ) lying in  Z (t ), i.e., yl(tk I tkml). 

Thus we must have 

). The second term represents the additional k-1' k- 1 

- k  

- k - 

- k  k 

where W (y) i s  the Wiener optimal estimator function. If the stochastic processes 

are gaussian, then the optimal estimator i s  a linear function of i t s  aigument. In 

this case W becomes a matrix and we have 

- 

Only i f  the processes are non-gaussian (thus requiring third order statistics) can 

our estimation be improved by using a non-linear function for W (y). Thus we have - 

where n i s  the noise and errors vector and - 
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X, (tk) on Y (tk - ,). Assuming the expansion 

D K )  - DO('') = G ( X ' ) ( X ' - X " ) + O ( X ' - X " )  2 , - - -  - 

where 

Thus we have 

where W n , the optimal estimation of noise, i s  zero. Assuming the expansion - 

s f X' (t,), t2 1 - s - 

where 5 i s  the state transition matrix. We have 



Now 

Since 

E 

- - 

Thus 

Let us denote the covariance matrix of A X  (t 1 t ) by 1 (tk+1)' We have - k + l  k 
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= E [ x (tk) I z {tk) I i s  a random variable. - 

Thus we have 

If no additional information were obtained at t then W would be zero and II (t) 

would be given by II = #  II#' , a reasonable result i f  $ i s  considered to be a 

state transition matrix. 

k+ 1 

We must now determine the optimal estimator W. We have by definition 

i.e. the component ofx (tk) lying i n  z (tk) i s  w z l ( t k  I tkml)* - 
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N = E  t n n T I .  - -  where 

and we have final ly 
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c. Minimum Variance Differential Correction Applied to Perturbed 
Dynamic Systems 

In Section b, a method for correcting the system coordinates was derived. 

This method involved the computation of the optimal estimator W. We have 

assumed that our system consists of an exactly solvable part, which i s  disturbed 

by a small perturbation. For this type system, the coordinates at  a given time 

constitute a set of elements for the exactly solvable part. Thus we can consider 

correcting system elements rather than system coordinates. This approach has two 

distinct advantages. 

First, one can usually determine an analytic fonn for the state transition 

matrix 

analytic solution. Notice that using the exact transition matrix for the per tuht ion 

transition i s  equivalent to ignoring second order error terms. This replacement can 

be made even more consistent by adjusting the exact transition matrix during 

recti fi cation. 

for the elements. This i s  true because we presumably have an exact 

Second, a judicious choice of  elements can result in a well-behaved 

transition matrix. When using the coordinates as elements, the transition matrix 

i s  a very rapidly varying function of time. A general criterion for good behavior 

i s  that only one element should depend on the total energy. This i s  discussed more 

thoroughly i n  a report from the Goddard Space Flight Center.' 

The theory of section B can be reformulated in terms of system elements 

quite easily. Defining the following matrices 

"Goddard Minimum Variance Orbit Determination Program", Goddard Space Flight 
Center, Greenbelt, Md. , October 18, 1962. 

1 
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Here we have introduced (matrix) + , this i s  just the new matrix produced by 

both the transition and optimization processes. If no new information i s  obtained, 

(;.e., W = 0) then (matrix)' = (matrix). 

Let us now examine the specifics of applying the above results to the 

parameter optimization problem. I f  we replace the differentials by derivatives, 

we can write the transition matrix as 

or in  component form 

As an example, consider the problem of determining the length of a rod. 

Let the exact length be unity, and we know init ially that the length i s  .?5 + .2  . 
We have 

- 

A0 = .04 

with the rest of  the results given in Table 1 . Notice that W approaches 

zero, and thus less importance i s  placed on later measurements, i.e. 

estimator remembers where it is. 

the optimal 



t 

1 

2 

3 
4 

5 

7 

- 

Y 

.920 

1.030 
1.010 
.970 
1.070 

N 

.m64 

.0004 
.o001 
.ooo9 
.0049 
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W 

- .030 
+. 106 
-. 005 
-.041 
+.a3 

.860 

.860 

.830 

.loo 

.001 

dY 

-. 026 
+. 091 
-. 004 
-.oo4 

.ooo 

Y 

.924 

1.015 
1.01 1 
1.007 

1.007 

.0056 

.o005 

.o001 

.m 

.oooo 

TABLE I 

MINIMUM VARIANCE EXAMPLE 

From the discussion in  part c o f  section B , we know that for the 

two body problem, the coordinates at some time t. can be written as linear combin- 

ations of the coordinates at time t . In matrix notation, we have 
I 

0 

(PI (Q) 

0') (0) 
X (t.) = ( . . 1 X (to) = M X_(to) 

I - 

where (P) = , etc., and the subelements were given explicitly - 

in part C of section I . In component form, we have 

Xi (t,) = Mii X. (t ) 
I O  

and our transition matrix becomes 

k 
aM. 

I 
involves only the computation of the ax. The computation of the matrix 

24 partial derivatives, 
I 
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These partial derivatives can be evaluated from the analytic formulas given in 

part c of section B . The resulting formulas i n  chain rule form are 

a a e  ax. - - sin t? - 
r 
0 I 

0 1 0 1 aa 
a ax. 

ad 
+ -  

ad 
( 1 - c o s  e )  ( a  - ax. 

I 0 I 
+k 

1 
ar 

r ax 
0 ax. + - -  1 - cos e 1 aa 1 a r  

0 I 

a p  - - @ { sin e I -To ax. + - -  ax. rr 
0 I I 0 

ax. 
I 

v av 
1 0 0 O 1  = 2a [ -* ax. + k  ax. 

ar 1 aa 

r I I 
;; ax. 

I 
0 
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0 
r d 

a 
D= t 1 - ( -  0 - 1)cos e +-& s i n  e l  

a e  0 
r d 

+ -  1 ( 1  - O'a) sin e +-- e )  ax. ) r 
ak I 

The remaining partials (ro, Vo, do) are trivial and wi l l  not be recorded here. 

In  applying these results to any actual problem, the specific t y p e s  of 

measurements must be defined. For the numerical calculations the two measure- 

ments of range and range rate were arbitrarily selected. The station coordinates 

are given by 

X = R COS el  COS ( C2 (t -to) + e3 - P2) 
S 

Y = Rcos e, s i n  ( Q ( t - t )  + e 3 - P 2 )  
S 0 

Z = R sin P I  
S 

where R i s  the radius of the earth; R, the earth's rotation; p l  the station 

the station longitude; 8 the longitude of the vernal equinox @2 3' latitude; 

at the init ial time. 

Using these relations we have 
1 '2 

2 2 2 + (y - y,) + (z - zs) Range = p = ( X  - Xs) ) 



-33- 

-90 
.f 
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Differentiating these expressions, we have the G matrix explicitly. 

0 0 1 1 
P 

- (x - xs) 5 (Y - Y,) - ( 2  - 2s) 
I 1  

z - (x - xs> 5; (Y - Y,) - ( x  + QY,) - (Y -Qxs) Q 

P 

1 .  1 .  1 1 1 .  
P P P 

A block diagram showing the minimum variance calculation i s  shown in 

Figure 2 

computation. The switch,@, between A 
measurement i s  made, A, i s  then replaced by r\' . 

. The blocks refer to matrices and the number tags are the order of 
t and /\o indicates that i f  the 

\ 

I 



D. COMPUTER PROGRAM 

The entire problem has been programmed for the UNIVAC 1107. The 

problem consists of  thirty-five subprograms, each of  which performs a required 

computation. At present there are 27 pieces of information input to the program. 

They are listed below, together with representative values: 

1. Maximum number of Newton-Raphson iterations 

2. Maximum number of Kepler iterations 

3. Allowable Rectification error 

4. Time increment 

5. Allowable Kepler equation error 

6. The number of integration per minimum variance 
ca Icu lation 

7. Dimensions of dynamic space 

8. Dimensions of observation space 

9. Maximum time 

10-12. Init ial position coordinates ( x f  y f  z) 

13-15. Init ial velocity coordinates (x,y,z) 

16-18. Init ial position errors (x,y,z) 

19-21. Initial velocity errors (x,y,z) 

22. Latitude of tracking station 

23. Longitude of  tracking station 

24. Latitude of Vernal Equinox at injection 

25. Init ial time 

26. Range measurement error 

27. Range-rate measurement error 

4 

5 
1 

IO-~J.D. 
1 o 5  

10 

6 

2 

1 o3 
1 

10 

1 o-2 

1.8 

.03 

The first nine quantities represent initial data, which defines the 

particular problem involved. These are printed i n  the format shown in  Fig. 3. 

The rest of the information i s  related to the injection of the satellite into orbit 
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and i s  printed i n  the format shown in Figure 4. The two body orbit having the 

init ial  conditions i s  calculated, and pertinent information i s  output in  the format 

shown in Figure 5. Following each integration, the information shown in  Figure 6 

i s  printed, and following each minimum variance calculation the information shown 

i n  Figure 7 i s  printed. The formats in  Figures 6 and 7 are self explanatory. 

The present computer pmgmm i s  quite flexible, and very slight modifications 

are necessary to include different observations and/or perturbations. However, 

the method of computing the transition matrix i s  just numerical evaluation o f  the 

chain role differentiation. This computation could be improved by analytically 

simplifying the partial derivatives. 
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Initial Data 

Time increment . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .loo-02 JD 

Allowable Kepler Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .lo046 
Maximum Kepler Iterations.. . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

Dimensions of Dynamic Space . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Allowable Perturbation Error . . . . . . . . . . . . . . . . . . . . . . . . . . .loo-06 
Maximum Time for Integrations.. . .. . . . . . . . . . . . . . . . . . . . . 2438123.100 

Dimensions of Observation Space . , . . . . . . . . . . . . . . . . . . . . 2 

Maximum Newton-Raphson Iterations . . . . . . . . . . . . . . . . . . 5 

A Minimum Variance Calculation i s  Made Every 10 integrations 

JD 

Figure 3 
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Injection Data 

Range Error .............................. .31623-01 

Injection Time.. ........................... 2438123.000 JD 

Range-Rate Error .......................... .31623-01 

Station Latitude ........................... .OOOOO 

Station Longitude ......................... .OOOOO 

Vernal Equinox Longitude ................... .OOOOO 

X Y Z 

Injection Coords .700oat04 .OOOOo . 00000 

Injection Errors . lOOOOtOO .10000+00 . lOooot00 

Injection Coords 

Injection Errors 

DXIDT DY /DT DZ’DT 

. 00000 .53033+0 1 .5303%0 1 

.looo0+00 .1000ot00 .100oot00 

Figure 4 
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Two Body Data 

Mean Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .lo97742 
Initial Time 

Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 17 1 -0 1 
I ni tia I Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7500OtO 1 
Initial Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7OOOOtO4 
Semi-Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .69158+04 
Position Dot Velocity . . . . . . . . . . . . . . . . . . . . . . . . . .OOOOO 

........................ ..... ... .. 2438123.000 JD 

Initial Two Body 

x =  .70000t04 

Y =  .m 

z =  .OOoOo 

DX'DT = .OoOOO 

DY 'DT = .53033+01 

DZ 'DT = .53033+01 

Figure 5 



Orb; t Data 

Time ........................ ........ ..... ... 2438123.002 JD 

Two Body Eccentric Anomaly.. . . . .. . . . . . . . . . . . . . . 
Number of Kepler Iterations . . . . . . . . . . . . . . . . . . . . . 
Metric Between Last Two Iterates . . . . . . . . . . . . . . . . . 

.18731-00 

1 

.OOOOO 

X Y 

Two Body Coords .68790+04 .91059+03 

Orbit Coods .a78744 .91111+03 

DX'DT DY 'DT 

Two Body Coords -. 1397Ot01 .52116+01 

Orbit Coords -. 13997+01 .52114+01 

Z 

.91059+03 

.911 lot03 

DZ 'DT 

.521 l&O1 

.52112+01 

Figure 6 
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I l l .  METHOD OF SOLVING NONLINEAR DIFRRENTIAL EQUATIONS 

The following presentation deals wi th  an effective method of solving a set of 

nonlinear differential equations subject to the knowledge of a complete set of boundary 

values distributed between two points. This presentation i s  hoped to be a more lucid 

yet more general explanation of the method presented by McGi l l  and Kenneth. 
1 

Let us consider the set of nonlinear differential equations 

1 

n 

Further, we wi l l  use the Taylor's series for functions of  several variables to obtain 

afl fi (xl, ..., x t) = f. (sl, ..., s t) + (xl - sl) 
1 n' I n' 

Should we assume that our x. l ie "sufficiently near" the s 

f. (X, t) by this truncated Taylor's Series and thus obtain 

we could approximate 
I i' 

I 

afl 
+ a r  (xn - sn) 

afl 
fl (xl, ..., x n' t )  = fl(sl, ..., sn/ t) + as,(xl -1) + 0 . 0  

n 

Solution of variational problems by means of a generalized Newton-Raphson 
1 

operator. Research Department, Grumman Aircraft Engineering Corporation; 
Bethpage, New York 

-43- 
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1 

x 1  

X S 
n ,  n 

For convenience we denote the matrix by J(S, t), the Jacobian, the vectors 

n 
f 

I [ I 
In this new notation our system of truncated equations become 

and 1 by e, S, and F respectively. 

Since this i s  a linear system in e , it i s  obvious that were S given and the functional 

form of F and J known, we could, with a complete set of initial values at t = t O f  

integrate this system. Of course, if one had a complete system of ini t ial  values at 

t = t 

numerically in a perfectly routine manner. 

one could have solved the very first system of equations, Equation ( 1 ), 
O f  

We wish, however, to solve the two point boundary value problem in which 

there i s  given only a partial set of k values at t = t 0 

At a subsequent time t = tl we have an additional set of n - k values: 
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x ( t ) = x  p 1 p l  where we have n - k identities. 

1 
values i s  satisfied, and, i n  general, make no further demands on e except that 

i t  be n times differentiable. So now, 

2 
i s  a linear system in  8 , due to elimination o f  higher order terms. We are able 

to generate, at least numerically, a new vector @ which i s  based on the original 

differential system and which wi l l  be required to satisfy the given boundary conditions. 

This method i s  definitely better than the so called "shotgun" method, i n  which the 

n - k unknown init ial values are treated as parameters and varied about init ial 

guesses. For each variation, the nonlinear system i s  numerically integrated, and 

from the entire spectrum of solutions the one satisfying most nearly the desired end 

point boundary values i s  selected. The linearized approach used here allows us to 

use the unique linear properties of the particular integral and complimentary solutions 

to construct a solution to the boundary value problem, i n  a simple, algebraic manner. 

2 

First we genemte numerically a solution U which satisfies Equation ( 3 ) 
P 

subject to the partial set of init ial values. 
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and solve i t  subject to the init ial conditions 
I 

1 '  We compute U from t = t to t = t P 0 

We wi l l  consider next the equation homogeneous to Equation ( 3 ) which i s  

X - J ( Q , t ) X  1 = O  
(4) 

X ( t = t )  
0 

s t  
the 1 occurring i n  the k + 1 

variable unknown at time t . 
row, i .e. the first 

0 

We call this complementary solution U 

same differential equation subject to the initial conditions 

complementary 1 Ucl. We now solve the 

X ( t = t )  = 
0 

~ , the 1 occurring i n  the k + 2nd row. 
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We call the solution to this problem Uc2. Continuing i n  this manner, we obtain a 

solution to Equation ( 4  ) satisfying 

x (t = to) = th , the 1 occurring in the n row , 

which i s  called U . This gives us a complete set of  complementary solutions. 
c(n-k) 

Since we have a linear system o f  equations, 

i s  a solution vector of Equation ( 3 ) . We now employ the n-k conditions that occur 

at t = t to solve this n-k by n-k system of algebraic equations for the constants 

An-k A,, . . ., An-k. This choice of Al, . .., 
at t = t and our method of computing U 

2 1 
forces to satisfy the n-k constants 

autornatica I ly requires 

to satisfy Equation ( 3 ) and the boundary conditions at t = t . Hence @ i s  a 
p' "cl '  " 'c(n-k) 2 1' 2 

0 

solution vector satisfying a l l  boundary conditions. 

We are now able to repeat this entire process and obtain 

i3 = ~ ( e * , t )  + J ( P ~ , ~ )  [ e  3 2  - e  I ,  etc. 

We observe that i f  : 

(2) J (Xm-', t) i s  a bounded operator, that is, 
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then X m  

iteration equation becomes 

= F (Xm-', t) + J (X m-l , t) [ Xm -Xm-l] , and our general 

m- 1 Xm = F (Xm, t) + [ F (Xm-', t) - F (Xm, t) 1 + J (X ,t) (Xm - Xm-l) . 

So that irn = F (Xm, t) i- 0 (E  ), that is, Xm i s  the solution. 

This i s  a simplified set of necessary conditions and may be easily replaced by a 

more sophisticated set. A paper by McGi l l  and Kenneth, "A convergence Theorem 

on the Iterative Solution of Nonlinear Two Point Boundary Value Systems", proves 

that, subject to certain restrictions, the set of vector X do converge to the solution 

vector. 

n 



IV. ERRATA SHEET 

(For Report No. I of "Parameter Optimization") 

Page 13, 14th line 

then = 0 

should read 

then a = 0 

Page 15, 6th line 

at some point v -1 

should read 

at some point r -1 

Page 15, Eq. (3.3) 

L2 

should read 

, 2  
L 

P =  2 
M M G  s e  

-49- 
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Page 16, Eq. (3.4) 

-1 1 P 
0 =l-cos - ( - - I )  

e ‘1 0 

should read 

-1 1 P e = e l  -cos - ( -  - 1 )  
e ‘1 0 

Page 17, Eq. (3.7) 

1 1 
K ( - 2  - -2 )  = . 

‘1 ‘2 

should read 

2 1  1 
K ( - 2  - -2 )  = 

‘1 ‘2 

Page 18, 8th line 

< then e o =  0 .  ‘1 ‘2 

should read 

TI then eo = T + 0 
‘1 < ‘2 

Page 18, 9th line 

> r2 then eo = e 1  - TI ‘1 

should read 

r 1  > r2 then 0, = €I1 
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(For Report No. 2 of "Parameter Optimization") 

Page 25, 8th equation 

1 - L l= lMsr x V - I = M S r V c o s  6 = M  s r V s i n  e 

should read 

I L I  =(Msr - x V I = M S r V c o s  - 6 = M S r V s i n  Cp 

Page 25, ?fh equation 

aL  M r vcos 6 ;5e= 5 

should read 

- -  a L  - - M  r Vsin 6 a e  S 

Page 26, 2nd equation 

should read 

ap 2L a L  - - ? ? sin 26 ae = M 2 M  Gm - K 
s e  

Page 26, Last part of Eq. (14) 

r V COS e de dP = K 
should read 

-? ? sin 26 de 
K dP = 
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Page 29, Eq. (19) 

cos (9 - 0  ) d V  o r  d e =  
o e  

should read 

de = fiK e 
cos ( 6 - 6  0 ) d 

Page 30, 4th equation 

2L ap 2L aL 

r J 

2 
1 

should read 

Page 30, Eq . (20) 

2L r, 4 -  
dP= - d L m  2 r  8 4 

e M M  G s e  

should read 
2 2Lr 

dP =-  M M  G 
s e  e 

Page 32, 5th equation 

0 
a6 

a e  
2 c  

sin (e - e  ) + K sin ( 0  -eo) (Pa - r ) - = - Ke cos ( e  - eo) -7 2 Ke 
r T  0 Kea 
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should read 

Ke sin ( 8  -eo) - K sin (0 - 0  ) (Pa - r 2 c  ) Kea = - Ke cos ( 0  -eo) - aOO 

a i  r T  0 

Page 32, Last part of the 6th equation 

sin ( 0  - 0  ) 

Ke 
0 

sin (0 - 0  ) 
2 2 r  0 

(p - r ) G  'm = ( p + r )  

should read 

sin ( 8  -Bo) b + r ) r  
sin (0 - 8 ) 

2 2 r  0 

(p - r ) G  'T =Ce 

Page 32, Last equation 

should read 

Explanation of Notations: 

K stands for rLO in  report No. 1 and for GMe in  this report. Throughout this 
2 -  report C stands b r r  0 .  
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(For Report No. 3 of "Parameter Optimization") 

Page 5, 3rd equation 

ac K ( l + e c o s  e ) + ~ - s e  ae 2c r= 

should read 

K ( 1  + e  cos 9) + Krcos 8 ae 
= 

Page 5, 5th equation 

should read 

Page 5, 6th equation 

should read 
2 - 3P 3 a  (l-e ) ae 

5 r c o s e = 7  
- 

r cos 0 
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Page 6, 2nd equation 

6 ae P - 2P (2 cos 8 + 3 ae) 2 aa 4P + 

( 1 - 1  r = r  r c o s e  
r2 mse 

- 

should read 

2 aa 4P 6ae P - 2P (2r cos 8 + 3ae) ( 1 - e ) z  = - - f  '2 - 
r cos8 r2 mse 

Page 6, 3rd equation 

aa ar= r cos 8 
2a (2 cos 8 + 3 ae) 

should read 

aa - 2a (2r cos e -f 3 ae) 
2 
r cos8 

x -  

Page 6, 6th equation - 

0 
ae 3P - - 3P = er s in  ( e  -eo) 

r 

should read 

0 3P + er sin (e - e  ) +r + 7 
a e  4P P - =  - 

r r 0 

Page 6, 7th equation 

1 t - 4 1  3P 
5 T  -erne) r 

a e  
0 -  

0 

should read 
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Page 7, Eq. (6) 

a P  - 2 aer sin 8 
a T  - r  COS^ + h e  

should read 
m 

a p  - 2aeL rsin 8 
3 r cos8 + 2  ae 

- 

Page 9, Eq. (13) 

‘2 ‘1 ‘2 

=2 M M G  1 S 
- M 2 { 2 M G ( -  e r 2 + r  1 - (‘2 + ‘1) 2) + 

s e  

r: - r12 >2 
2 

+ 
+ ‘1 

should read 

1 a L2 

M 2  1 - 
S 

- M ~ M  G 
s e  

2 
‘2 

2 2 
‘2 + ‘1 

e 
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0 

(‘2 2r13r22 - ‘1 3 2 
0 2  0 2  2‘1 ‘2 

+ ( ‘ 2  - ‘ 1  ) (2-T + - 2 3 2  
‘2 - ‘1 

L 

‘2 

Page 9, Eq. (14) 

2 
M 2  ‘2 * 2  - 2  r 1 r 2 4  

2 + ( ‘ 2  - ‘1  ) 2 2 2 
‘2 - ‘1 1 

a L2 S 7 = M T  
e 

should read 

Page 10, Eq. (16) 

2 il a L2 

should read 

a L2 - 2 i l M S  2 
2 2  (:: 2 :21) 
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Page 10, 3rd equation 

e =/- M M G  

should read 

e =  

Page 10, Last equation 

G M M  2L2 

s 

should read 

2L2 

M ~ M  2~ 
s e  

Page 11, Last part of Eq. (17) 
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Page 1 1 ,  Last part of Eq. (18) 

=2 M K  
s 

+ + L2 22 
MS ‘1 

K - 
‘1 a;, aL2))  

\ 
should read 

Page 19, 3rd line 

2 2  

4 1 > o  E cos e - + 

should read 

9 9  


